Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578518

RESUMEN

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibroblastos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratones , Ciclooxigenasa 2/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Pulmón/metabolismo
2.
Bioeng Transl Med ; 8(3): e10461, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206227

RESUMEN

Tumor cells can respond to therapeutic agents by morphologic alternations including formation of tunneling nanotubes. Using tomographic microscope, which can detect the internal structure of cells, we found that mitochondria within breast tumor cells migrate to an adjacent tumor cell through a tunneling nanotube. To investigate the relationship between mitochondria and tunneling nanotubes, mitochondria were passed through a microfluidic device that mimick tunneling nanotubes. Mitochondria, through the microfluidic device, released endonuclease G (Endo G) into adjacent tumor cells, which we referred to herein as unsealed mitochondria. Although unsealed mitochondria did not induce cell death by themselves, they induced apoptosis of tumor cells in response to caspase-3. Importantly, Endo G-depleted mitochondria were ineffective as lethal agents. Moreover, unsealed mitochondria had synergistic apoptotic effects with doxorubicin in further increasing tumor cell death. Thus, we show that the mitochondria of microfluidics can provide novel strategies toward tumor cell death.

3.
Cells ; 12(3)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766759

RESUMEN

Increasing evidence suggests a pivotal role of receptor-interacting protein kinase 1 (RIPK1), an initiator of necroptosis, in neuroinflammation. However, the precise role of RIPK1 in microglial activation remains unclear. In the present study, we explored the role of RIPK1 in lipopolysaccharide (LPS)-induced neuroinflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice by using RIPK1-specific inhibitors necrostatin-1 (Nec-1) and necrostatin-1 stable (Nec-1s). Nec-1/Nec-1s or RIPK1 siRNA inhibited the production of proinflammatory molecules and the phosphorylation of RIPK1-RIPK3-MLKL and cell death in LPS-induced inflammatory or LPS/QVD/BV6-induced necroptotic conditions of BV2 microglial cells. Detailed mechanistic studies showed that Nec-1/Nec-1s exerted anti-inflammatory effects by modulating AMPK, PI3K/Akt, MAPKs, and NF-κB signaling pathways in LPS-stimulated BV2 cells. Subsequent in vivo studies showed that Nec-1/Nec-1s inhibited microglial activation and proinflammatory gene expression by inhibiting the RIPK1 phosphorylation in the brains of LPS-injected mice. Furthermore, Nec-1/Nec-1s exert neuroprotective and anti-inflammatory effects in MPTP-induced PD mice. We found that p-RIPK1 is mainly expressed in microglia, and thus RIPK1 may contribute to neuroinflammation and subsequent cell death of dopaminergic neurons in MPTP-induced PD model mice. These data suggest that RIPK1 is a key regulator of microglial activation in LPS-induced neuroinflammation and MPTP-induced PD mice.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Mol Cells ; 45(12): 950-962, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36572563

RESUMEN

Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.


Asunto(s)
Envejecimiento , Caveolina 2 , Enfermedades Neuroinflamatorias , Animales , Humanos , Ratones , Encéfalo/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Noqueados , Enfermedades Neuroinflamatorias/genética , ARN Interferente Pequeño/metabolismo , Envejecimiento/patología
5.
Cell Mol Immunol ; 19(12): 1373-1391, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36241874

RESUMEN

The interplay between apoptotic cancer cells and the tumor microenvironment modulates cancer progression and metastasis. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting these events through paracrine communication. Here, we demonstrate that conditioned medium (CM) from lung CAFs exposed to apoptotic cancer cells suppresses TGF-ß1-induced migration and invasion of cancer cells and CAFs. Direct exposure of CAFs to apoptotic 344SQ cells (ApoSQ) inhibited CAF migration and invasion and the expression of CAF activation markers. Enhanced secretion of Wnt-induced signaling protein 1 (WISP-1) by CAFs exposed to ApoSQ was required for these antimigratory and anti-invasive effects. Pharmacological inhibition of Notch1 activation or siRNA-mediated Notch1 silencing prevented WISP-1 production by CAFs and reversed the antimigratory and anti-invasive effects. Enhanced expression of the Notch ligand delta-like protein 1 on the surface of ultraviolet-irradiated apoptotic lung cancer cells triggered Notch1-WISP-1 signaling. Phosphatidylserine receptor brain-specific angiogenesis inhibitor 1 (BAI1)-Rac1 signaling, which facilitated efferocytosis by CAFs, participated in crosstalk with Notch1 signaling for optimal production of WISP-1. In addition, a single injection of ApoSQ enhanced WISP-1 production, suppressed the expression of CAF activation markers in isolated Thy1+ CAFs, and inhibited lung metastasis in syngeneic immunocompetent mice via Notch1 signaling. Treatment with CM from CAFs exposed to ApoSQ suppressed tumor growth and lung metastasis, whereas treatment with WISP-1-immunodepleted CM from CAFs exposed to ApoSQ reversed the antitumorigenic and antimetastatic effects. Therefore, treatment with CM from CAFs exposed to apoptotic lung cancer cells could be therapeutically applied to suppress CAF activation, thereby preventing cancer progression and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Vía de Señalización Wnt , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral , Fibroblastos/metabolismo , Movimiento Celular
6.
Biol Proced Online ; 24(1): 16, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289539

RESUMEN

BACKGROUND: Micro RNA of Marsupenaeus japonicas has been known to promote apoptosis of tumor cells. However, the detailed mechanisms are not well understood. RESULTS: Using tomographic microscope, which can detect the internal structure of cells, we observed breast tumor cells following treatment of the miRNA. Intriguingly, we found that mitochondria migrate to an adjacent tumor cells through a tunneling nanotube. To recapitulate this process, we engineered a microfluidic device through which mitochondria were transferred. We show that this mitochondrial transfer process released endonuclease G (Endo G) into tumor cells, which we referred to herein as unsealed mitochondria. Importantly, Endo G depleted mitochondria alone did not have tumoricidal effects. Moreover, unsealed mitochondria had synergistic apoptotic effects with subtoxic dose of doxorubicin thereby mitigating cardiotoxicity. CONCLUSIONS: Together, we show that the mitochondrial transfer through microfluidics can provide potential novel strategies towards tumor cell death.

7.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457238

RESUMEN

Neuroinflammation is crucial in the progression of neurodegenerative diseases. Thus, controlling neuroinflammation has been proposed as an important therapeutic strategy for neurodegenerative disease. In the present study, we examined the anti-inflammatory and neuroprotective effects of GTS-21, a selective α7 nicotinic acetylcholine receptor (α7 nAChR) agonist, in neuroinflammation and Parkinson's disease (PD) mouse models. GTS-21 inhibited the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and primary microglia. Further research revealed that GTS-21 has anti-inflammatory properties by inhibiting PI3K/Akt, NF-κB, and upregulating AMPK, Nrf2, CREB, and PPARγ signals. The effects of GTS-21 on these pro-/anti-inflammatory signaling molecules were reversed by treatment with an α7 nAChR antagonist, suggesting that the anti-inflammatory effects of GTS-21 are mediated through α7 nAChR activation. The anti-inflammatory and neuroprotective properties of GTS-21 were then confirmed in LPS-induced systemic inflammation and MPTP-induced PD model mice. In LPS-injected mouse brains, GTS-21 reduced microglial activation and production of proinflammatory markers. Furthermore, in the brains of MPTP-injected mice, GTS-21 restored locomotor activity and dopaminergic neuronal cell death while inhibiting microglial activation and pro-inflammatory gene expression. These findings suggest that GTS-21 has therapeutic potential in neuroinflammatory and neurodegenerative diseases such as PD.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Compuestos de Bencilideno , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Agonistas Nicotínicos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Piridinas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
8.
Biomolecules ; 12(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327639

RESUMEN

Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.


Asunto(s)
Macrófagos , PPAR gamma , Pirimidinas , Factor de Transcripción STAT6 , Animales , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Pirimidinas/farmacología , Factor de Transcripción STAT6/metabolismo , Zimosan/farmacología
9.
Biology (Basel) ; 11(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35205121

RESUMEN

Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.

10.
Biomedicines ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829903

RESUMEN

Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.

11.
Korean J Physiol Pharmacol ; 25(6): 575-583, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697268

RESUMEN

Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

12.
Cells ; 10(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652833

RESUMEN

The signal transducer and activator of transcription 6 (STAT6) transcription factor promotes activation of the peroxisome proliferator-activated receptor gamma (PPARγ) pathway in macrophages. Little is known about the effect of proximal signal transduction leading to PPARγ activation for the resolution of acute inflammation. Here, we studied the role of STAT6 signaling in PPARγ activation and the resolution of acute sterile inflammation in a murine model of zymosan-induced peritonitis. First, we showed that STAT6 is aberrantly activated in peritoneal macrophages after zymosan injection. Utilizing STAT6-/- and wild-type (WT) mice, we found that STAT6 deficiency further enhanced zymosan-induced proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6, and macrophage inflammatory protein-2 in peritoneal lavage fluid (PLF) and serum, neutrophil numbers and total protein amount in PLF, but reduced proresolving molecules, such as IL-10 and hepatocyte growth factor, in PLF. The peritoneal macrophages and spleens of STAT6-/- mice exhibited lower mRNA and protein levels of PPARγ and its target molecules over the course of inflammation than those of WT mice. The deficiency of STAT6 was shown to impair efferocytosis by peritoneal macrophages. Taken together, these results suggest that enhanced STAT6 signaling results in PPARγ-mediated macrophage programming, contributing to increased efferocytosis and inflammation resolution.


Asunto(s)
Inflamación/genética , Inflamación/metabolismo , PPAR gamma/metabolismo , Factor de Transcripción STAT6/metabolismo , Enfermedad Aguda , Animales , Ratones , Transducción de Señal
13.
Cell Death Dis ; 12(1): 19, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414479

RESUMEN

Apoptosis inhibitor of macrophage (AIM) modulates the signaling in inflammatory responses, including infection, cancer, or other immune diseases. Recent studies suggest that like interleukin-10 (IL-10), AIM is involved in alternatively activated (M2) macrophage polarization. We aimed to understand whether and how AIM is involved in IL-10-induced inhibition of inflammasome activation and resolution of inflammation. First, we demonstrated that IL-10 induced increases in mRNA and protein expression of AIM in murine bone marrow-derived macrophages (BMDM). In addition, genetic and pharmacologic inhibition of STAT3 (signal transducer and activator of transcription 3) reduced IL-10-induced AIM expression. We also found that IL-10-induced STAT3 activity enhanced the AIM promoter activity by directly binding the promoter of the AIM gene. Additionally, reduction of LPS/adenosine triphosphate (ATP)-induced IL-1ß production and caspase-1 activation by IL-10 was reversed in BMDM from AIM-/- mice. Treatment of BMDM from both wild type (WT) and IL-10-/- mice with recombinant AIM showed the inhibitory effects on IL-1ß and IL-18 production and caspase-1 activation. Endogenous and exogenous AIM inhibited apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) speck formation. In LPS-induced acute peritonitis, inhibition of IL-1ß and IL-18 production in peritoneal lavage fluid (PLF) and serum, reduction of caspase-1 activation in peritoneal macrophages, and reduction of numbers of neutrophils and peritoneal macrophages in PLF by administration of IL-10 were not evident in AIM-/- mice. Our in vitro and in vivo data reveal a novel role of AIM in the inhibition of inflammasome-mediated caspase-1 activation and IL-1ß and IL-18 production.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Inflamasomas/inmunología , Interleucina-10/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Receptores Depuradores/inmunología , Animales , Células Cultivadas , Inmunomodulación , Macrófagos , Macrófagos Peritoneales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Biomed Pharmacother ; 130: 110576, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32768884

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor impairments. Most PD drugs act by improving motor impairments, whereas very few drugs that efficiently recover PD-related neuropathological features, particularly α-synuclein-related toxicity, have been developed. In this study, we found that papaverine (PAP) attenuated behavioral deficits and protected against nigrostriatal dopaminergic degeneration in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) mouse model of PD. Histological analysis of tissue dissected from mice sacrificed nearly 3 weeks after the completion of treatment revealed that PAP significantly ameliorated microglia/astrocyte activation in the striatum and substantia nigra of MPTP/P-treated mice. In addition, PAP diminished α-synuclein expression and aggregation in this model. Furthermore, PAP inhibited the phosphorylation of α-synuclein at serine 129, which may underlie the observed reduction in α-synuclein aggregation. PAP also reduced the expression of matrix metalloproteinase-3 (MMP-3), and the MMP3-positive area co-labeled with thioflavin-S. Taken together, our data suggest that PAP inhibits dopaminergic neuronal cell death and α-synuclein aggregation by suppressing neuroinflammation and MMP-3 expression in the subacute MPTP/P mouse model of PD. Accordingly, PAP may be a promising drug for the treatment of PD.


Asunto(s)
Intoxicación por MPTP/tratamiento farmacológico , Metaloproteinasa 3 de la Matriz/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Papaverina/uso terapéutico , Agregación Patológica de Proteínas/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Astrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por MPTP/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Neurotoxinas , Papaverina/farmacología , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
15.
J Neuroinflammation ; 16(1): 246, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791357

RESUMEN

BACKGROUND: Neuroinflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Thus, the development of agents that can control neuroinflammation has been suggested as a promising therapeutic strategy for PD. In the present study, we investigated whether the phosphodiesterase (PDE) 10 inhibitor has anti-inflammatory and neuroprotective effects in neuroinflammation and PD mouse models. METHODS: Papaverine (PAP) was utilized as a selective inhibitor of PDE10. The effects of PAP on the expression of pro-inflammatory molecules were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells by ELISA, RT-PCR, and Western blot analysis. The effects of PAP on transcription factors were analyzed by the electrophoretic mobility shift assay, the reporter gene assay, and Western blot analysis. Microglial activation and the expression of proinflammatory molecules were measured in the LPS- or MPTP-injected mouse brains by immunohistochemistry and RT-PCR analysis. The effect of PAP on dopaminergic neuronal cell death and neurotrophic factors were determined by immunohistochemistry and Western blot analysis. To assess mouse locomotor activity, rotarod and pole tests were performed in MPTP-injected mice. RESULTS: PAP inhibited the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia by modulating various inflammatory signals. In addition, PAP elevated intracellular cAMP levels and CREB phosphorylation. Treatment with H89, a PKA inhibitor, reversed the anti-inflammatory effects of PAP, suggesting the critical role of PKA signaling in the anti-inflammatory effects of PAP. We verified the anti-inflammatory effects of PAP in the brains of mice with LPS-induced systemic inflammation. PAP suppressed microglial activation and proinflammatory gene expression in the brains of these mice, and these effects were reversed by H89 treatment. We further examined the effects of PAP on MPTP-injected PD model mice. MPTP-induced dopaminergic neuronal cell death and impaired locomotor activity were recovered by PAP. In addition, PAP suppressed microglial activation and proinflammatory mediators in the brains of MPTP-injected mice. CONCLUSIONS: PAP has strong anti-inflammatory and neuroprotective effects and thus may be a potential candidate for treating neuroinflammatory disorders such as PD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Papaverina/uso terapéutico , Trastornos Parkinsonianos/prevención & control , Inhibidores de Fosfodiesterasa/uso terapéutico , Animales , Antiinflamatorios/farmacología , Línea Celular Transformada , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Fármacos Neuroprotectores/farmacología , Papaverina/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/enzimología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Biomolecules ; 9(10)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590238

RESUMEN

Previously, we demonstrated that growth arrest-specific protein 6 (Gas6)/Axl or Mer signaling inhibited the transforming growth factor (TGF)-ß1-induced epithelial-mesenchymal transition (EMT) in lung epithelial cells. Hepatocyte growth factor (HGF) has also been shown to inhibit TGF-ß1-induced changes in EMT markers. Here, we examined whether Gas6 signaling can induce the production of HGF and c-Met in lung alveolar epithelial cells to mediate the inhibition of EMT and to inhibit the migration and invasion of epithelial cells. The inhibition of the RhoA/Rho kinase pathway, using either a RhoA-targeted small interfering RNA (siRNA) or the Rho kinase pharmacologic inhibitor Y27362, prevented the inhibition of TGF-ß1-induced EMT in LA-4 cells and primary alveolar type II (AT II) epithelial cells. The c-Met antagonist PHA-665752 also blocked the anti-EMT effects associated with Gas6. Moreover, treatment with Y27362 or PHA-665752 prevented the Gas6-mediated inhibition of TGF-ß1-induced migration and invasion. Our data provided evidence that the RhoA-dependent production of HGF and c-Met mediated the Gas6-induced inhibition of EMT, migration and invasion in lung alveolar epithelial cells. Thus, Gas6/Axl and Mer/RhoA signaling may be necessary for the maintenance of homeostasis in the alveolar epithelium, via HGF and c-Met.


Asunto(s)
Células Epiteliales Alveolares/citología , Factor de Crecimiento de Hepatocito/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Células Epiteliales Alveolares/metabolismo , Amidas/farmacología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Piridinas/farmacología , ARN Interferente Pequeño/farmacología , Transducción de Señal , Sulfonas/farmacología , Proteína de Unión al GTP rhoA/genética
17.
Cell Mol Immunol ; 16(11): 851-867, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30842627

RESUMEN

Apoptotic cell clearance by phagocytes is essential in tissue homeostasis. We demonstrated that conditioned medium (CM) from macrophages exposed to apoptotic cancer cells inhibits the TGFß1-induced epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Apoptotic 344SQ (ApoSQ) cell-induced PPARγ activity in macrophages increased the levels of PTEN, which was secreted in exosomes. Exosomal PTEN was taken up by recipient lung cancer cells. ApoSQ-exposed CM from PTEN knockdown cells failed to enhance PTEN in 344SQ cells, restore cellular polarity, or exert anti-EMT and anti-invasive effects. The CM that was deficient in PPARγ ligands, including 15-HETE, lipoxin A4, and 15d-PGJ2, could not reverse the suppression of PPARγ activity or the PTEN increase in 344SQ cells and consequently failed to prevent the EMT process. Moreover, a single injection of ApoSQ cells inhibited lung metastasis in syngeneic immunocompetent mice with enhanced PPARγ/PTEN signaling both in tumor-associated macrophages and in tumor cells. PPARγ antagonist GW9662 reversed the signaling by PPARγ/PTEN; the reduction in EMT-activating transcription factors, such as Snai1 and Zeb1; and the antimetastatic effect of the ApoSQ injection. Thus, the injection of apoptotic lung cancer cells may offer a new strategy for the prevention of lung metastasis.


Asunto(s)
Apoptosis/efectos de la radiación , Neoplasias Pulmonares , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Rayos Ultravioleta , Animales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Macrófagos/patología , Ratones , Metástasis de la Neoplasia , Células PC-3 , Células RAW 264.7
18.
J Neuroinflammation ; 15(1): 326, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470240

RESUMEN

BACKGROUND: Recent evidence suggests that reactive astrocytes play an important role in neuroinflammation and neurodegenerative diseases. Thus, controlling astrocyte reactivity has been suggested as a promising strategy for treating neurodegenerative diseases. In the present study, we investigated whether a matrix metalloproteinase (MMP)-8 inhibitor, M8I, could control neuroinflammation in lipoteichoic acid (LTA)-stimulated rat primary astrocytes. METHODS: The effects of M8I on the expression of inducible nitric oxide synthase, cytokines, and MMPs were examined in LTA-stimulated rat primary astrocytes by ELISA, RT-PCR, and Western blot analysis. The effects of M8I on reactive oxygen species (ROS) generation and phase II antioxidant enzyme expression were examined by the DCF-DA assay, RT-PCR, and Western blot analysis. The detailed molecular mechanisms underlying the anti-inflammatory and antioxidant effects of M8I were analyzed by the electrophoretic mobility shift assay, the reporter gene assay, Western blot, and RT-PCR analysis. RESULTS: Treatment with LTA, a major cell wall component of Gram-positive bacteria, led to astrocyte activation and induced the expression of inflammatory molecules such as iNOS, COX-2, and pro-inflammatory cytokines. In addition, LTA induced the expression of MMPs such as MMP-1, MMP-3, MMP-8, MMP-9, and MMP-13 in rat primary astrocytes. Based on previous reports showing that MMP-8 plays a role as a proinflammatory mediator in microglia, we investigated whether MMP-8 is also involved in inflammatory reactions of reactive astrocytes. We found that treatment of astrocytes with M8I significantly inhibited LTA-induced expression of iNOS, TNF-α, IL-1ß, IL-6, and TLR-2. In addition, M8I inhibited LTA-induced NF-κB, MAP kinase, and Akt activities, while it increased the anti-inflammatory PPAR-γ activities. Moreover, M8I showed antioxidant effects by suppressing ROS production in LTA- or H2O2-stimulated astrocytes. Interestingly, M8I increased the expression of phase II antioxidant enzymes such as hemeoxygenase-1, NQO1, catalase, and MnSOD by modulating the Nrf2/ARE signaling pathway. CONCLUSIONS: The data collectively suggest the therapeutic potential of an MMP-8 inhibitor in neuroinflammatory disorders that are associated with astrocyte reactivity.


Asunto(s)
Astrocitos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Metaloproteinasa 8 de la Matriz/metabolismo , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Péptidos Catiónicos Antimicrobianos , Células Cultivadas , Corteza Cerebral/citología , Citocininas/genética , Citocininas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Nitritos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Ácidos Teicoicos/farmacología
19.
Cell Physiol Biochem ; 48(3): 1332-1346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30048972

RESUMEN

BACKGROUND/AIMS: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The defining characteristics of GBM are diffuse infiltration of tumor cells into normal brain parenchyma, rapid growth, a high degree of infiltration of microglia and macrophages, and the presence of necrosis. Microglia/macrophages are frequently found in gliomas and they extensively infiltrate GBM tissue, up to 30% of total tumor mass. However, little is known about the effect of necrotic cells (NCs) on microglia infiltration in GBM and the tumor-infiltrating microglia-induced factors in GBMs. METHODS: In this study, to address whether necrosis or necrosis-exposed GBM cells affect the degree of microglia/macrophage infiltration, migration and invasion/infiltration assays were performed. Culture supernatants and nuclear extracts of CRT-MG cells treated or untreated with necrotic cells were analyzed using a chemokine array and electrophoretic mobility shift assay, respectively. RESULTS: The presence of NCs promoted the migration/infiltration of microglia, and GBM cell line CRT-MG cells exposed to NCs further enhanced the migration and infiltration of HMO6 microglial cells. Treatment with NCs induced mRNA and protein expression of chemokines such as Monocyte Chemoattractant Protein-1 (CCL2/MCP-1) and Macrophage Inflammatory Protein-3α (CCL20/MIP-3α) in CRT-MG cells. In particular, CCL2/MCP-1 and CCL20/MIP-3α were significantly increased in NC-treated CRT-MG cells. NCs induced DNA binding of the transcription factors Nuclear Factor (NF)-κB and Activator Protein 1 (AP-1) to the CCL2/MCP-1 and CCL20/MIP-3α promoters, leading to increased CCL2/MCP-1 and CCL20/MIP-3α mRNA and protein expression in CRT-MG cells. CONCLUSION: These results provide evidence that NCs induce the expression of CCL2/MCP-1 and CCL20/MIP-3α in glioblastoma cells through activation of NF-κB and AP-1 and facilitate the infiltration of microglia into tumor tissues.


Asunto(s)
Neoplasias Encefálicas/patología , Quimiocina CCL20/metabolismo , Quimiocina CCL2/metabolismo , Glioblastoma/patología , Microglía/patología , Necrosis/patología , Invasividad Neoplásica/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Quimiocina CCL2/análisis , Quimiocina CCL2/genética , Quimiocina CCL20/análisis , Quimiocina CCL20/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Microglía/metabolismo , Necrosis/genética , Necrosis/metabolismo , Invasividad Neoplásica/genética , ARN Mensajero/análisis , ARN Mensajero/genética
20.
J Leukoc Biol ; 103(5): 885-895, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29603355

RESUMEN

The signal transducer and activator of transcription 6 (STAT6) transcription factor activates peroxisome proliferator-activated receptor gamma (PPAR-γ)-regulated gene expression in immune cells. We investigated proximal membrane signaling that was initiated in macrophages after exposure to apoptotic cells that led to enhanced PPAR-γ expression and activity, using specific siRNAs for ABCA1, STAT6, and PPAR-γ, or their antagonists. The interactions between mouse bone marrow-derived macrophages or RAW 264.7 cells and apoptotic Jurkat cells, but not viable cells, resulted in the induction of STAT6 phosphorylation as well as PPAR-γ expression and activation. Knockdown of ATP-binding cassette transporter A1 (ABCA1) after the transfection of macrophages with ABCA1-specific siRNAs reduced apoptotic cell-induced STAT6 phosphorylation as well as PPAR-γ mRNA and protein expression. ABCA1 knockdown also reduced apoptotic cell-induced liver X receptor α (LXR-α) mRNA and protein expression. Moreover, inhibition of STAT6 with specific siRNAs or the pharmacological inhibitor AS1517499AS reversed the induction of PPAR-γ, LXR-α, and ABCA1 by apoptotic Jurkat cells. PPAR-γ-specific siRNAs or the PPAR-γ antagonist GW9662 inhibited apoptotic cell-induced increases in LXR-α and ABCA1 mRNA and protein levels. Thus, these results indicate that apoptotic cells trigger the ABCA1/STAT6 pathway, leading to the activation of the PPAR-γ/LXR-α/ABCA1 pathway in macrophages.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apoptosis , Regulación de la Expresión Génica , Macrófagos/patología , PPAR gamma/metabolismo , Factor de Transcripción STAT6/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Animales , Células Cultivadas , Humanos , Células Jurkat , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , PPAR gamma/genética , Fosforilación , Factor de Transcripción STAT6/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...